Page 1

CSSE 120 - Introduction to Software Development (Robotics section)

Concept: Using Objects

Objects, Types and Values — and Classes

In Python, every “thing” (that is, every item of data) is called an object.

An object has a type and a value. For example:

type: imnt type: float type: sStr typa: 1list
3.0 'Hello World' [1,1,2,3,5,8]
The type of an object determines: - -
zg.Point zg.Circle
e The kind of thing the object is -
X radius
e What operations the object can do y D 1
You can create your own type, by writing a class. We'll p:_'._i
see the insides of a class later, but for now all you need
to know is that a class has:
draw '
e Aname {graphwm]l .
move(dx, dy) draw({graphwin)
. flelds (aka instance variables) — the data that satFill I{E:D|D r} mwe{dx, d}']l
instances of the class hold
undraw() getCenter()
e Methods — the operations (functions) that EEtWidthI{Width]l
instances of the class can do
We describe these in a UML Class Diagram, where UML
stands for Unified Modeling Language. See the examples to the right.
The 3 Key Ideas for Using Objects
To construct an object: Constructor:

win = zg.GraphWin ()

peintl = zg.Point (500, 450)
line = zg.Line(pointl, zg.Point (30, 40))
circle = zg.Circle(pointl, 100)

To ask an object to do something,
i.e. to apply its methods to it:

pointl.draw (window)

-60)

x = poilntl.getX()
circle.getCenter ()

line.move (45,

center

To reference what the object knows

(its instance variables, aka fields):

pointl.x circle.pl

circle.p2

+ Callit like a function, using
the name of the class

« Style: Class namesbegin
with an uppercase letter

+ The constructor allocates
space for the object and
does whatever initialization
the class specifies

Method call:
* Use the dot notation:
Who .Does What (With What)
Just like a function call, except that the method has

access to the object invoking the method.
So the object is an implicit argument to the method call

Instance variable (aka field) reference:
* Use the dot notation but without
parentheses Who .Has What




